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Abstract

Bundle recommendation aims to improve user experience by
suggesting complementary items that users are likely to pur-
chase together. Although recent advances in recommendation
systems have shown promise, there are still significant chal-
lenges: i) The dynamic nature of user preferences and in-
teractions introduces noise that can distort the effectiveness
of recommendations. ii) Existing methods frequently exhibit
limited robustness when addressing the sparsity of user inter-
actions with bundles in real-world scenarios. To tackle these
issues, we introduce a disentangled contrastive bundle rec-
ommendation (DCBR) framework with conditional diffusion.
First, we propose a conditional bundle diffusion model for de-
noising the user-bundle interaction graph, introducing a bun-
dle latent consistency constraint during the optimization pro-
cess to mitigate the degradation of original interaction infor-
mation. Subsequently, we design a triple-view denoised graph
learning module to obtain effective representations from mul-
tiple views. Furthermore, we present a dual-level disentan-
gled contrastive learning paradigm, which addresses the la-
tent relationships at two levels: between views (inter-view)
and within each view (intra-view). By maximizing the consis-
tency between positive samples in these contrastive views, we
generate disentangled contrastive signals, overcoming inter-
action sparsity and alleviating noise issues. Our experimental
evaluations on three benchmark datasets reveal that DCBR
significantly outperforms state-of-the-art methods.

Code — https://github.com/recomall/DCBR

Introduction
In recent years, the field of recommendation systems has
evolved significantly, with a particular focus on improving
user experience through enhanced item suggestions. Bun-
dle recommendation, which aims to recommend comple-
mentary items that users are likely to purchase together, has
emerged as a promising area of research (Chen et al. 2019a;
Chang et al. 2020; Ma et al. 2022).

Early research on bundle recommendation (Rendle,
Freudenthaler, and Schmidt-Thieme 2010) has been viewed
as a special form of user-item recommendation, with con-
ventional solutions typically employing Collaborative Filter-
ing (CF) methods to analyze user interactions with bundles.
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However, the bundle recommendation context includes in-
formation such as user-bundle interactions, user-item inter-
actions, and bundle-item affiliations, while these approaches
primarily focus on the user-bundle interaction space, ne-
glecting other views. Based on this, some research methods
have considered user-item interactions and bundle-item as-
sociations to fully utilize the valuable information provided
by the scenario (Sun et al. 2024). Factorization models (Cao
et al. 2017; Chen et al. 2019a) and Graph Neural Networks
(GNNs) (Deng et al. 2020; Chang et al. 2020, 2021) are
some commonly used techniques that have proven to be
effective in handling complex high-order relationships be-
tween users, bundles, and items. However, the highly sparse
interaction space in real-world contexts restricts the ability
of GNNs to effectively model intricate user preferences in
a fully supervised manner. To address data sparsity in rec-
ommendations, an approach is to leverage Self-Supervised
Learning (SSL) to extract features from unlabeled user be-
havior data (Wu et al. 2021; Yu et al. 2022a, 2023; Jeon et al.
2024), which constructs self-supervised contrastive views by
methods such as randomly dropping nodes, dropping edges,
random walks, and adding random noise. Recent studies
have explored the integration of SSL to improve bundle rec-
ommendation, with examples such as MIDGN (Zhao et al.
2022), CrossCBR (Ma et al. 2022), EBRec (Du et al. 2023),
and MultiCBR (Ma et al. 2024). SSL-based bundle recom-
mendation methods primarily aim to leverage relationships
between multiple views to construct self-supervised tasks,
alleviating the challenges posed by insufficient supervision
due to sparse interactions.

Despite the widespread application of SSL in bundle rec-
ommendation, several limitations persist: i) In bundle rec-
ommendation, factors such as user behavior uncertainty, in-
cluding erroneous clicks on bundles, inevitably introduce
noise that can significantly mislead the model’s learning
process, thereby affecting the quality of the final recom-
mendations. ii) In real-world scenarios, existing methods of-
ten demonstrate poor robustness in the face of sparse user-
bundle interactions. Although previous work has attempted
to integrate SSL into bundle recommendation, some studies
typically rely on directly using the final fused user (bundle)
representations for contrastive learning. This approach in-
evitably introduces confounding noise due to semantic gaps
between different views, resulting in suboptimal contrastive
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signals. To overcome the aforementioned issues, we propose
a novel disentangled contrastive bundle recommendation
(DCBR) framework with conditional diffusion. Specifically,
inspired by the outstanding performance of diffusion mod-
els (Ho, Jain, and Abbeel 2020; Wang et al. 2023) in data de-
noising, we aim to introduce diffusion models into the bun-
dle recommendation domain to effectively remove or mit-
igate the inevitable latent noise in the user-bundle interac-
tion graph. However, conventional diffusion models applied
directly for denoising graph data may mistakenly filter out
genuine interaction information as noise. To address this is-
sue, we propose a conditional bundle diffusion model specif-
ically designed to denoise user-bundle interaction data. To
alleviate the degradation of the original interaction informa-
tion during the denoising process, we introduce a bundle la-
tent consistency constraint to maximize the consistency of
the latent bundle representations between the generated de-
noised views and their original counterparts. To capture ef-
fective higher-order collaborative relationships among user-
bundle, user-item, and bundle-item interactions, we design
the triple-view denoised graph learning module. This mod-
ule adaptively fuses the representations of users and bundles
across the multiple views using tunable parameters for sub-
sequent preference score calculations of users towards bun-
dles. Moreover, to mitigate the introduction of confounding
noise due to semantic discrepancies between different views
during the adaptive fusion process, we propose a dual-level
disentangled contrastive learning paradigm. The dual lev-
els represent the exploration of potential relationships be-
tween multiple views (inter-view) and within a single view
(intra-view) in the recommendation task. At the inter-view
level, we enhance the shared node features between views
by learning the disentangled relationships among different
views. At the intra-view level, we rely on the comparative
analysis of local features within a single view to increase
each view’s sensitivity to local interactions. “Disentangled”
can be understood as constructing contrastive views utiliz-
ing the original features before fusion of features. By maxi-
mizing the similarity between positive samples in these con-
trastive views and minimizing the similarity between neg-
ative samples, we generate disentangled contrastive signals
for users (bundles) to address interaction sparsity while alle-
viating confounding noise.

To summarize, the key contributions of our research are
outlined as follows:
• We design a conditional bundle diffusion model for de-

noising the core user-bundle interaction graph in recom-
mendation tasks. The bundle latent consistency constraint
effectively balances the reduction of useful interaction in-
formation and the denoising learning capability.

• We propose a dual-level disentangled contrastive learning
paradigm, which effectively avoids the formation of se-
mantic noise during the multi-view feature fusion process
and provides robust auxiliary contrastive signals for rec-
ommendation tasks.

• The experimental results on three public datasets validate
the performance improvement and effectiveness of our
proposed DCBR in bundle recommendation.

Related Work
Self-Supervised Learning for Recommendation. Self-
supervised learning (SSL) has proven to be an effective so-
lution to address the issue of scarce labels in recommenda-
tion systems (Wu et al. 2021). Popular approaches utilize
unlabeled data from user-item interactions to generate ad-
ditional self-supervised signals, enhancing the original su-
pervised learning tasks. For example, SimGCL (Yu et al.
2022a), XSimGCL (Yu et al. 2023), NCL (Lin et al. 2022)
and LightGCL (Cai et al. 2023) employ various graph aug-
mentation techniques, such as random edge dropout, node
dropout, and semantic neighbor identification, to generate
self-supervised signals by contrasting positive node pairs.
In the bundle recommendation, MultiCBR (Ma et al. 2024)
advocates self-contrastive learning on the fused multi-view
representations. Conversely, we propose a novel dual-level
disentangled contrastive learning paradigm that combines
global information between views with local representations
within views to achieve robust user preference learning.
Recommendation with Diffusion Models. Diffusion Mod-
els (DMs) (Ho, Jain, and Abbeel 2020; Sohl-Dickstein
et al. 2015) have excelled in various fields, such as image
generation (Epstein et al. 2023) and inpainting (Lugmayr
et al. 2022) in the visual domain, as well as text genera-
tion (Austin et al. 2021) in natural language processing. Re-
cently, DMs have been extensively utilized in recommender
systems, exemplified by approaches such as DiffRec (Wang
et al. 2023), GDSSL (Li and Wang 2024), DiffKG (Jiang
et al. 2024), and DDRM (Zhao et al. 2024). DiffKG em-
ploys generative diffusion models as a data augmentation
technique to enhance representation learning in knowledge
graphs, while DDRM enhances the robustness of user and
item embeddings through a multi-step denoising process
to address noisy implicit feedback. In contrast, our condi-
tional bundle diffusion model introduces a bundle latent con-
sistency constraint designed to preserve the original user-
bundle interaction information during the denoising process.
Bundle Recommender Systems. Bundle recommendation
aims to model user preferences for bundled items and ac-
cordingly recommend predefined bundles to potentially in-
terested users. Inspired by the outstanding performance of
Graph Convolutional Networks (GCNs) (Kipf and Welling
2017) in representation learning, BGCN (Chang et al. 2020)
utilizes GCNs to capture user preferences at the bundle and
item levels through a dual view approach, focusing on the
user-bundle interaction graph and the bundle-item associa-
tion graph. With the introduction of contrastive learning in
recommendation systems, MIDGN (Zhao et al. 2022) sep-
arates user-bundle preferences into local and global views,
applying contrastive loss between these two views. Cross-
CBR (Ma et al. 2022) utilizes contrastive learning in cross
views to improve the similarity of representations for the
same node. BundleGT (Wei et al. 2023) designs a hierar-
chical graph transformer to model strategy-based represen-
tations for bundles and users. MultiCBR (Ma et al. 2024)
performs self-supervised contrastive learning after fusion of
multi-view representations. In contrast, our DCBR leverages
DMs to integrate contrastive learning, enhancing the denois-
ing of relation learning in bundle recommendation.
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Figure 1: Architecture of our proposed disentangled contrastive bundle recommendation with conditional diffusion.

Preliminary
In this section, we recapitulate the fundamental concepts
of the groundbreaking DDPM in establishing the diffusion
model. The primary objective of the DDPM parameterized
by ϕ is to characterize the data-generating distribution of the
target data x0, denoted as pϕ(x0). In the forward process,
DDPM progressively introduces Gaussian noise to x0 with
a variance schedule of [β1, · · · , βt, · · · , βT ]:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), ᾱt =

t∏
t′=1

(1−βt′). (1)

In the reverse process, the denoised data x̂ϕ are generated
through the learned parameter ϕ. Formularily,

pϕ(xt−1|xt) = N (xt−1;µϕ(xt, t),Σϕ(xt, t)). (2)

Moreover, to cater to the domain of recommendation sys-
tems, DiffRec builds upon DDPM by designing denoising
optimization objectives:

LELBO = Et∼U(1,T )

(
Eq(xt|x0)

(
α̂t ∥x̂ϕ(xt, t)− x0∥22

))
,

α̂t =
ᾱt−1 − ᾱt

2 (1− ᾱt−1) (1− ᾱt)
. (3)

This work mainly explores how to effectively adapt the dif-
fusion model to bundle recommendation.

Methodology
Task Formulation
In the bundle recommendation scenario, we define the user
set as U = {u1, u2, · · · , uM}, the bundle set as B =

{b1, b2, · · · , bK}, and the item set as I = {i1, i2, · · · , iN},
where M , K, and N represent the sizes of the correspond-
ing sets. Given the user-bundle interaction graph Gub =
{(u, b)|u ∈ U , b ∈ B}, the user-item interaction graph
Gui = {(u, i)|u ∈ U , i ∈ I}, and the bundle-item affilia-
tion graph Gbi = {(b, i)|b ∈ B, i ∈ I}, represented by their
adjacency matrices Wub ∈ RM×K , Wui ∈ RM×N , and
Wbi ∈ RK×N , the goal is to learn a function F((u, b)|Θ)
to predict the likelihood ŷub of a user u adopting an unseen
bundle b where Θ denotes the learnable parameters of F .

The architecture diagram of our proposed DCBR is shown
in Figure 1, consisting mainly of learnable embedding pa-
rameters E

(0)
u ∈ RM×d for users, E(0)

b ∈ RK×d for bun-
dles, and E

(0)
i ∈ RN×d for items, all of which are initialized

randomly. Here, d represents the embedding size.

Conditional Bundle Diffusion Model
In order to learn denoising for user-bundle interaction graph
Gub, our proposed Conditional Bundle Diffusion Model
(CBDM) also includes forward and reverse processes as
shown in Eq. (1) and Eq. (2), with the target data x0 be-
ing the adjacency matrix Wub of Gub. Based on prior knowl-
edge, the basic optimization objective of the model is LELBO,
and the denoised output of the model is Ŵub.

General diffusion models directly applied to the user-
bundle interaction graph Gub, without alignment with the
recommendation task, fail to achieve substantial denoising
effects. Therefore, we propose the Bundle Latent Consis-
tency Constraint (BLCC) to ensure that the denoised graph
Ĝub more accurately captures the true interaction scenario.
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Specifically, CBDM samples all bundles for batched users,
with the embeddings of the batched users represented as
Ẽ

(0)
u ∈ RB×d, where B denotes the batch size. BLCC aims

to maximize the consistency between the latent bundle rep-
resentations of the generated denoised view and its original
view, alleviating the degradation of original interaction in-
formation during the denoising process. Formally,

LBLCC =
∥∥∥W̃⊤

ϕ · Ẽ(0)
u −E

(0)
b

∥∥∥2
2
, (4)

where W̃ϕ ∈ RB×K represents the denoised interactive ad-
jacency matrix between a batch of users and all bundles.
Based on batch training and inference, Ŵub can be obtained
by concatenating W̃ϕ from all batches. Ultimately, the opti-
mization objective for CBDM can be represented as follows:

argmin
ϕ

LCBDM = LELBO + λ0LBLCC. (5)

Here, λ0 is used to control the contribution of the BLCC loss
relative to the ELBO loss.

Triple-View Denoised Graph Learning
To effectively capture higher-order collaborative relation-
ships across user-bundle (UB), user-item (UI), and bundle-
item (BI) interactions, we design the triple-view denoised
graph learning module utilizing graph neural networks. For
simplicity, we define Wx = {Ŵub,Wui,Wbi} to repre-
sent the corresponding graph structures. Inspired by previ-
ous work (Yu et al. 2022a; Ma et al. 2024), we incorporate
random noise perturbation ϵ̃

(l)
x at each propagation layer l to

strengthen robustness against triple-view noise. Specifically,

ϵ̃(l)x = υx ·sign(E(l)
x )⊙ ϵ

(l)
x∥∥∥ϵ(l)x

∥∥∥
2

, ϵ(l)x ∈ Rd ∼ U (0, 1) , (6)

E(l+1)
x =

(
D

− 1
2

x

[
0 Wx

W⊤
x 0

]
D

− 1
2

x

)
·E(l)

x + ϵ̃(l)x , (7)

where E
(l)
x represents the embedding of the corresponding

interaction graph structure Wx after l iterations of graph
message passing. The initial embeddings, E(0)

UB , E(0)
UI , and

E
(0)
BI , are constructed by stacking E

(0)
u with E

(0)
b , E(0)

u with
E

(0)
i , and E

(0)
b with E

(0)
i , respectively. Dx denotes the di-

agonal degree matrix of the bidirectional adjacency matrix
from Wx, essential for normalization. υx is the coefficient
that controls the intensity of noise in the corresponding view.

To effectively aggregate embeddings from various layers
for complex and diverse scenarios, our DCBR uses weighted
average pooling to derive the final representations EUB, EUI

and EBI for the three views, which is expressed as: Ex =∑L
l=0 ξ

(l)
x E

(l)
x . Here, L represents the number of propaga-

tion layers, and ξ
(l)
x is the fusion weight associated with

the view. Subsequently, EUB
u ∈ RM×d and EUB

b ∈ RK×d,
EUI

u ∈ RM×d and EUI
i ∈ RN×d, EBI

b ∈ RK×d and
EBI

i ∈ RN×d are split from EUB, EUI, EBI, respectively.
Furthermore, we extract latent bundle representations EUI

b
in user-item interactions and latent user representations EBI

u

in bundle-item affiliations to enhance the embeddings of rel-
evant nodes. The specific learning process is as follows:

ĒUI
b = D̄−1

BI Wbi ·EUI
i , ĒBI

u = D̄−1
UI Wui ·EBI

i , (8)

EUI
b = ĒUI

b + υbi · sign(ĒUI
b )⊙ ϵBI

∥ϵBI∥2
, (9)

EBI
u = ĒBI

u + υui · sign(ĒBI
u )⊙ ϵUI

∥ϵUI∥2
, (10)

where D̄BI ∈ RK×K and D̄UI ∈ RM×M are diagonal ma-
trices associated with the views Wbi and Wui, respectively.
ĒUI

b and ĒBI
u denote original representations obtained by

graph convolution. On this basis, we introduce the adaptive
noise ϵBI, ϵUI ∈ Rd ∼ U(0, 1) as in Eq. (6) to further en-
hance the noise resistance ability of our model.

Finally, the node representation (Eu ∈ RM×d,Eb ∈
RK×d) learned by our DCBR are obtained through the adap-
tive fusion from the dual views, which are represented as:

Eu = ωEUI
u +(1−ω)EBI

u , Eb = ωEUI
b +(1−ω)EBI

b . (11)

Here, ω is used to control the weight of the two views. Eu

and Eb represent the final learned representations of users
and bundles, respectively.

Dual-Level Disentangled Contrastive Learning
In recent years, self-supervised learning, especially con-
trastive learning, has gradually become an important tech-
nique to overcome the sparsity of interaction behaviors in
bundle recommendations. However, previous methods (Ma
et al. 2024) have attempted to directly use the final fused
user (bundle) representations for contrastive learning, which
inevitably introduces entangled noise due to semantic gaps
between different views, leading to suboptimal contrastive
signals. To address this challenge, we propose Dual-level
Disentangled Contrastive Learning (DDCL), considering the
latent relations both between views (inter-view) and within
each view (intra-view). Motivated by InfoNCE (Oord, Li,
and Vinyals 2018), we maximize the similarity between pos-
itive user (bundle) samples across the two contrastive views
while pushing away negative samples, generating disentan-
gled contrastive signals to mitigate interaction sparsity and
alleviate entangled noise, which is as follows:

C(E∗
o,E

∗∗
o ) =

1

|O|
∑
o∈O

−log
exp(s(E∗

o,E
∗∗
o )/τ)∑

o
′∈O exp(s(E∗

o,E
∗∗
o
′ )/τ)

, (12)

where C(, ) represents the disentangled contrastive signal
generator, E∗

o and E∗∗
o denote the original and augmented

views of node o ∈ {u, b}, respectively. O represents the set
of nodes o, with |O| denoting the size of the corresponding
set. τ controls the sensitivity of our model to the similarity
difference between positive and negative samples. s(, ) de-
notes the cosine similarity between the two views, expressed
as s(E∗

o,E
∗∗
o ) = E∗

o
⊤ ·E∗∗

o / (∥E∗
o∥2 · ∥E∗∗

o ∥2).
In the inter-view level, we focus on discovering disen-

tangled relationships between various views. To adequately
learn shared features across views, the contrastive learning
task is designed to capture global cross-view information by
maximizing the consistency between different views:

Linter
o = C(EUB

o ,EUI
o )+C(EUB

o ,EBI
o )+C(EUI

o ,EBI
o ). (13)

12070



In the intra-view level, we emphasize exploring the fine-
grained relationships within each view. We enhance our
model’s sensitivity to local interactions by leveraging the
complementarity of local features within the same view:

Lintra
o = C(EUB

o ,EUB
o )+C(EUI

o ,EUI
o )+C(EBI

o ,EBI
o ). (14)

Ultimately, our dual-level disentangled contrastive loss
(DDCL) can be expressed as:

LDDCL = γ1(Linter
u +Linter

b )+ γ2(Lintra
u +Lintra

b ). (15)

Here, γ1 and γ2 are two tunable weights used to control the
relative strength of the inter-view and intra-view levels.

Multi-task Learning
The training of our DCBR consists mainly of two parts:
the CBDM (as defined in Eq. (5)) and the recommendation
model. For the recommendation task, we define a triplet that
includes a user, a bundle b+ that the user u has interacted
with and one b− the user has not:

R = {(u, b+, b−)|(u, b+) ∈ Gub, (u, b
−) /∈ Gub}, (16)

where R represents the set of triplets used for training. We
apply Bayesian Personalized Ranking (BPR) (Rendle et al.
2009) to optimize the recommendation model:

LBPR =
1

|R|
∑

(u,b+,b−)∈R

−lnσ(ŷu,b+ − ŷu,b−), (17)

ŷu,b+ = E⊤
u ·Eb+ , ŷu,b− = E⊤

u ·Eb− . (18)

Here, σ denotes the Sigmoid activation function. ŷu,b+ and
ŷu,b− represent the preference scores of user u for bundles
b+ and b−, calculated through the inner product, respec-
tively. Finally, integrating the proposed DDCL loss into the
BPR loss constitutes the optimization objective LBRec of our
bundle recommendation model, which can be expressed as:

argmin
Θ

LBRec = LBPR + λ1LDDCL + λ2∥Θ∥22, (19)

where λ1 controls the strength of our dual-level disentangled
contrastive loss, λ2 represents the L2 regularization term to
prevent overfitting, and Θ = {E(0)

u ,E
(0)
b ,E

(0)
i }.

Computational Complexity Analysis
The parameters of DCBR consist of embeddings for users,
bundles, and items: E

(0)
u ,E

(0)
b ,E

(0)
i . Therefore, the total

space complexity of DCBR is O((M +K +N)d). For time
complexity, the triple-view denoised graph learning mod-
ule employs graph convolutional networks to extract repre-
sentations from multiple graphs, with a time complexity of
O((2L|Ĝub|+(2L+1)(|Gui|+ |Gbi|))d), where |Ĝub|, |Gui|,
and |Gbi| represent the number of edges in the correspond-
ing graphs. The BPR loss has a time complexity of O(Bd),
while the dual-level disentangled contrastive learning pro-
cess requires O(B2d) time complexity.

Dataset MealRec+H MealRec+L iFashion
# User (U) 1,575 1,928 53,897
# Bundle (B) 3,817 3,578 27,694
# Item (I) 7,280 10,589 42,563
# U-B Interaction 46,767 11,807 1,679,708
U-B Sparsity 99.2221% 99.8288% 99.8875%
# U-I Interaction 151,148 181,087 2,290,645
U-I Sparsity 98.6818% 99.1130% 99.9001%
# B-I Affiliation 11,451 10,734 106,916
B-I Sparsity 99.9588% 99.9717% 99.9909%

Table 1: Statistics of experimental datasets.

Experiments
Experimental Settings
Datasets The datasets utilized in the evaluation include
MealRec+H , MealRec+L (Li et al. 2024), and iFashion (Chen
et al. 2019b), corresponding to meal and fashion out-
fit recommendation scenarios, respectively. MealRec+H and
MealRec+L represent MealRec+ datasets pre-processed with
5 cores and 2 cores, respectively. The statistical properties of
the data are summarized in Table 1, and the data partitioning
follows previous work (Ma et al. 2022; Li et al. 2024).

Evaluation Metrics and Protocols Following previous
work (Ma et al. 2022), we evaluate the performance of
bundle recommendation methods using two widely adopted
metrics: Recall@K (R@K) and NDCG@K (N@K), where
K = {10, 20}. All experimental results are based on the
model that achieves the highest Top-20 metrics in the vali-
dation set. We adopt the all-ranking evaluation protocol (He
et al. 2020; Wu et al. 2021) to calculate the metrics.

Baselines We compare our DCBR with various baselines:
i) Collaborative Filtering: Pop (Cremonesi, Koren, and Tur-
rin 2010), MF-BPR (Rendle et al. 2009), NGCF (Wang
et al. 2019), LightGCN (He et al. 2020), SGL (Wu
et al. 2021), SimGCL (Yu et al. 2022a), XSimGCL (Yu
et al. 2023), BIGCF (Zhang, Sang, and Zhang 2024);
and ii) Bundle Recommendation: BGCN (Chang et al.
2020), UHBR (Yu et al. 2022b), CrossCBR (Ma et al.
2022), DSCBR (Wu et al. 2023), EBRec (Du et al. 2023),
BundleGT (Wei et al. 2023), MultiCBR (Ma et al. 2024).

Implementation Details To ensure fair experimental
comparisons, our proposed DCBR and all comparative base-
lines are implemented using PyTorch (Paszke et al. 2019),
optimized with Adam optimizer (Kingma and Ba 2015) at
a learning rate of 1e−3, and evaluated on an NVIDIA RTX
3090 GPU with 24GB of memory. All models use Xavier
initialization (Glorot and Bengio 2010) for their embed-
dings, with the embedding size fixed at 64 and the mini-
batch size set at 2048. The number of negative samples and
the test interval are fixed at 1 and 5, respectively. For our
DCBR, the number of graph propagation layers L is fixed at
2, λ2 is selected in {1e−5, 1e−6, 1e−7}, and the υx, ξ(l)x , ω,
τ , γi ∈ [0; 1] are optimized through grid search. λ0 and λ1

are tuned from the ranges of {1e0, 1e1, 1e2, 1e3, 1e4} and
{0.01, 0.02, 0.03, 0.04, 0.05, 0.2, 0.3, 0.4}, respectively.
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Model Reference MealRec+H MealRec+L iFashion
R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20

Pop RecSys’10 0.0163 0.0101 0.0339 0.0168 0.0142 0.0059 0.0481 0.0166 0.0126 0.0113 0.0220 0.0152
MF-BPR UAI’09 0.1094 0.0757 0.1632 0.0917 0.0257 0.0157 0.0378 0.0190 0.0398 0.0359 0.0648 0.0463
NGCF SIGIR’19 0.1189 0.0843 0.1704 0.0992 0.0291 0.0160 0.0418 0.0193 0.0420 0.0376 0.0676 0.0481
LightGCN SIGIR’20 0.1397 0.0957 0.1963 0.1123 0.0447 0.0277 0.0525 0.0300 0.0519 0.0477 0.0824 0.0602
SGL SIGIR’21 0.1543 0.1099 0.2114 0.1259 0.0465 0.0279 0.0510 0.0293 0.0582 0.0535 0.0911 0.0670
SimGCL SIGIR’22 0.1433 0.1059 0.2038 0.1233 0.0454 0.0265 0.0627 0.0303 0.0659 0.0611 0.1023 0.0759
XSimGCL TKDE’23 0.1483 0.1072 0.2061 0.1241 0.0483 0.0274 0.0689 0.0324 0.0661 0.0616 0.1022 0.0763
BIGCF SIGIR’24 0.1488 0.1085 0.2110 0.1267 0.0453 0.0257 0.0597 0.0296 0.0660 0.0612 0.1022 0.0760
BGCN SIGIR’20 0.1800 0.1323 0.2440 0.1501 0.0736 0.0439 0.1069 0.0529 0.0526 0.0483 0.0834 0.0609
UHBR KBS’22 0.1417 0.0992 0.2032 0.1167 0.0451 0.0226 0.0789 0.0316 0.0654 0.0608 0.1013 0.0755
CrossCBR KDD’22 0.2727 0.2137 0.3670 0.2400 0.1252 0.0807 0.1678 0.0921 0.0760 0.0717 0.1132 0.0868
DSCBR TCSS’23 0.2564 0.1975 0.3385 0.2208 0.1336 0.0822 0.1670 0.0915 0.0748 0.0691 0.1133 0.0849
EBRec TORS’23 0.2481 0.1969 0.3303 0.2200 0.1311 0.0839 0.1744 0.0957 0.0765 0.0724 0.1154 0.0883
BundleGT SIGIR’23 0.2596 0.2085 0.3617 0.2358 0.1278 0.0724 0.1694 0.0841 0.0806 0.0759 0.1214 0.0926
MultiCBR TOIS’24 0.3196 0.2408 0.4211 0.2693 0.2666 0.1678 0.3369 0.1871 0.1058 0.1027 0.1497 0.1203
DCBR - 0.4113 0.3159 0.5261 0.3483 0.2761 0.1916 0.3611 0.2144 0.1189 0.1191 0.1633 0.1370
#Improv. - 28.69% 31.19% 24.93% 29.34% 3.56% 14.18% 7.18% 14.59% 12.38% 15.97% 9.08% 13.88%

Table 2: Overall performance of DCBR and compared baselines. The best result is bold and the second best is underlined.

Overall Performance
In this section, we compare the overall recommendation
performance of our DCBR framework with several base-
line methods. The results of our evaluations are summa-
rized in Table 2 for the top-K recommendations, which
are observed: (1) Performance superiority of DCBR. Our
DCBR demonstrates consistent superiority over state-of-the-
art (SOTA) baselines across all datasets and evaluation met-
rics. We attribute the significant improvement to: i) CBDM
effectively eliminates irrelevant and erroneous information
from user-bundle interactions; ii) DDCL captures the latent
relationships among multiple views to compensate for insuf-
ficient supervision. (2) Effectiveness of triple-view learn-
ing. The introduction of semantically rich interactions be-
tween users and items, as well as the affiliation informa-
tion between bundles and items, effectively enhances bun-
dle recommendations. By effectively modeling the infor-
mation across three views, bundle recommendation systems
generally achieve better results than general recommenda-
tion methods. (3) Significant advantages of disentangled
contrastive learning. Experimental results demonstrate that
contrastive learning-based methods significantly outperform
other approaches. Furthermore, the superiority of DCBR over
MultiCBR highlights that the dual-level disentangled con-
trastive learning paradigm not only enhances the robustness
of feature representations but also enables effective mitiga-
tion of noise signals caused by semantic discrepancies be-
tween views during the feature fusion process.

Ablation Study
In this section, we analyze the impact of different core
components in our DCBR. We conduct performance evalu-
ation by comparing DCBR with multiple variants obtained
by removing key modules. The following are the variants
used for comparison: “w/o BLCC”: only discards the pro-
posed BLCC loss, optimizing our conditional bundle diffu-
sion model with the ELBO loss. “w/o CBDM”: removes the
CBDM and directly uses the original user-bundle interaction

Data Metrics DCBR w/o BLCC w/o CBDM w/o inter w/o intra w/o DDCL

M
ea

lR
ec

+ H R@10 0.4113 0.3891 0.3711 0.2108 0.3957 0.0174
N@10 0.3159 0.3068 0.2893 0.1454 0.3077 0.0123
R@20 0.5261 0.5025 0.4731 0.2856 0.5070 0.0410
N@20 0.3483 0.3393 0.3183 0.1661 0.3400 0.0192

M
ea

lR
ec

+ L R@10 0.2761 0.2741 0.2798 0.1923 0.2714 0.0455
N@10 0.1916 0.1858 0.1834 0.1222 0.1792 0.0221
R@20 0.3611 0.3597 0.3464 0.2616 0.3375 0.0814
N@20 0.2144 0.2085 0.2016 0.1407 0.1971 0.0317

iF
as

hi
on R@10 0.1189 0.1172 0.1070 0.1023 0.1154 0.0245

N@10 0.1191 0.1184 0.1064 0.1003 0.1145 0.0219
R@20 0.1633 0.1612 0.1495 0.1462 0.1611 0.0404
N@20 0.1370 0.1360 0.1236 0.1182 0.1330 0.0284

Table 3: Ablation study on different components of DCBR.

graph instead of the denoised version. “w/o inter”, “w/o in-
tra”, and “w/o DDCL”: respectively eliminate the auxiliary
contrastive signal of inter-view level, intra-view level, and
dual-level disentangled contrastive learning.

We evaluate the results for all the experimental data, as
illustrated in Table 3, which demonstrates that DCBR con-
sistently outperforms the five variants. Specifically, the vari-
ant without BLCC shows a certain degree of performance
decline, validating that the BLCC loss effectively enhances
the denoising effect by mitigating the degradation of origi-
nal user-bundle interaction information during the denoising
process. Removal of CBDM leads to a notable decline in rec-
ommendation performance, demonstrating the effectiveness
of our CBDM in denoising user-bundle interaction informa-
tion. This variant directly utilizes the original graph as the
encoding object during the learning process, which may lead
to potential noise interference in the learned representations.
Abolishing inter-view, intra-view, or DDCL leads to a signif-
icant decrease in performance, illustrating that our designed
contrastive loss effectively avoids entangled noise caused by
semantic gaps between different views and compensates for
the lack of supervision due to data sparsity.
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Figure 2: Performance w.r.t. different user interaction spar-
sity degree on iFashion datasets.
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Figure 3: Hyperparameter analysis on the loss weights of
BLCC and DDCL of DCBR on MealRec+H dataset.

Robustness Investigation against Sparsity
We further investigate the robustness of the model in ad-
dressing sparse user interactions by conducting experiments
with DCBR alongside three representative bundle recom-
mendation baselines: BGCN, CrossCBR, and MultiCBR.
Specifically, we partition the user set into four groups based
on the degree of user nodes in the user-bundle training inter-
action graph of iFashion dataset, defined as (0, 20), [20, 40),
[40, 60), and [60,∞). From the results presented in Figure 2,
it is evident that DCBR outperforms all comparative base-
lines across user groups with varying levels of sparsity. This
further validates that denoising augmentation provided by
the conditional bundle diffusion model enables DCBR to ef-
fectively compensate for the lack of supervision in scenarios
characterized by scarce interaction labels through the gener-
ation of disentangled contrastive self-supervised signals.

Hyperparameter Analysis
We explore the impact of key hyperparameters, the BLCC
loss weight λ0 and the DDCL loss weight λ1, on the rec-
ommendation performance of DCBR. Figure 3 shows the re-
sults of the R@20 and N@20 on the MealRec+H datasets.
Based on the results, it can be concluded that increasing λ0

to a certain extent can improve the performance of DCBR,
but higher values can lead to a slight decline in performance
due to overly strong latent consistency constraints, resulting
in less significant denoising effects. Increasing λ1 can en-
hance performance by more effectively removing entangled
noise. However, excessively large values can misguide the
supervision task, leading to a decreased performance.

Case Study
In this section, we delve into a case study to qualitatively
investigate the effectiveness of our disentangled contrastive
learning framework in learning meaningful user preferences
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(b) Bundle Representations

Figure 4: Distribution of user/bundle representations learned
from the iFashion dataset.

under the denoising augmentation of conditional bundle dif-
fusion model. Specifically, we randomly sample 2, 000 users
and bundles from the iFashion dataset and map their learned
representations to 2-dimensional normalized vectors on the
unit hypersphere using t-SNE (Van der Maaten and Hinton
2008). We also used Kernel Density Estimation to plot the
feature distributions, aiming to present the density estima-
tion of angles for each point on the unit hypersphere more
clearly. In Figure 4, it is observed that compared to Mul-
tiCBR and BGCN, DCBR is capable of learning more uni-
formly distributed user and bundle representations, thereby
preserving the intrinsic features of users and bundles.

Conclusion
In this work, we present the disentangled contrastive bun-
dle recommendation (DCBR) framework. The conditional
bundle diffusion model we proposed plays a pivotal role in
denoising the user-bundle interaction graph, ensuring that
the essential information remains intact during optimiza-
tion. This is complemented by our triple-view denoised
graph learning module, which leverages multiple perspec-
tives to derive more robust user/bundle representations. Fur-
thermore, the dual-level disentangled contrastive learning
paradigm allows us to capture complex relationships be-
tween multiple views and within a single view, generating
high-quality contrastive signals that facilitate better learning
despite the inherent challenges of sparsity and noise. The
results of our extensive experiments on multiple benchmark
datasets demonstrate the effectiveness of DCBR, demonstrat-
ing its superiority over existing state-of-the-art methods.
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